架构
算法优劣决定了最终的图像识别效果,但是用户通常都只需接触成熟的图像识别软件或说模块,能做的选择或很少。相对而言,更该考虑的是如何根据自身需求选择合适的架构模式:
1、外围
通俗来说即图像识别模块安装或集成在前端,优点是处理器可直接对未经压缩保留了所有信息的原始视频流或图片进行识别。此方式在一定程度上提升了识别率,且由于无需经过网络传输,其具有较好的实时性。卡口系统要求必须集成在前端,以免造成重要识别结果的延迟。此方式还可进一步细分:
· 一体化识别摄像机模式,亦即直接把识别模块、抓拍控制和车辆检测、照明控制集成在摄像机内部,优点是可以简化系统结构,安装调试相对比较简洁,但是相应地对识别模块和抓拍控制的DSP芯片的处理能力、算法等提出了较高的要求。另一方面其采用SD卡进行暂存,容量小且在紧急状况时可能存在安全隐患。此类型车牌识别方式以海康、大华为代表;
· 嵌入式主机+摄像机模式,识别模块、抓拍控制和车辆检测、照明控制都集成在专门的工控机内,其环境适应性好,拥有更丰富的硬件资源,信息存储容量与安全性能都更好,故此目前行业应用得也比较多,代表厂商如博康。
2、内场
图像识别模块集成在后端控制中心等处,原始图片或视频流压缩后经过网络传输到后端进行识别,具有一定的延迟性,但该类方式,基于强大的计算机处理能力,故辨识精度和速度都要高,一套系统能识别多台摄像机图像。其维护较为方便,但辨识率受制于视频流压缩,且存在网络延迟的问题。
系统综合应用
目前车牌识别系统的识别准确率普遍能做到全天识别率92%以上。
内外有别
早在上世纪八十年代,国外便已经有一些零散的将图像处理技术应用于车牌识别领域,但是由于我国的车牌格式和国外有较大的差异,所以对于国外的车牌识别系统的技术研究,只能进行参考,不能直接应用。恒业智能安防(深圳)有限公司智能交通事业部产品经理张咏对此进行了较为详尽的分析:“我国的车牌识别系统,除需求识别英文字母及阿拉伯数字,还要对车牌颜色,汉字等信息进行识别,故此涉及到的算法建模也更多,相应的这方面的技术也可以说是独大,故此国内的应用基本以国产为主。如今可说国内外的技术相差不大,但是因为对颜色有识别要求,夜间补光不方便采用红外,加上国内车况普遍较差(车辆污损、有意遮拦等),故夜间车牌识别率会稍逊于国外。”
升级与应用
车牌识别存在清晰度与视域的矛盾、处理速度与识别率的矛盾、以及硬件性能与性价比的矛盾。目前两百万、五百万像素摄像机可实现普遍的识别需求,至于是否升级到八百万像素产品,需结合识别效果与投入进行综合考量。只能说选取最优的硬件设备与软件进行结合,以实现最好的识别效果,盲目升级硬件没有实用意义。
另一方面,苏州科达科技有限公司软件工程师罗成对软件方面可能的升级发展进行了简要总结:“在正常图片的识别上已难有大的发展,但是对于一些恶劣场景,比如过暗、过亮、雾天等会影响车牌识别的情况,以及污损车牌、部分遮挡车牌、阴影车牌等状况,可通过相关算法技术的升级,提升这些场景下的识别率。”
系统与子系统
车牌识别系统给了智能交通相关系统智能化的可能,但单独的车牌识别没有意义,必须与其他系统进行结合,通过提供底层数据,成为大型车辆管理系统里的底层核心系统。如今道路管理中的卡口等各类子系统已出现大融合的趋势,即卡口、电子警察、事件监测等子系统,形成一个综合检测系统。市场也已形成共识,未来道路上涉及到车辆的系统都会有一个车牌识别系统的参与,通过车辆的唯一ID——车牌来进行车辆管理。甚至把识别技术从机动车拓展到非机动车以及行人,实现对路面信息的全局监控,为道路管理者以及事件参与者带去更好的管理及出行体验。
【想第一时间了解安防行业的重磅新闻吗?请立即关注中安网官方微信(微信号:cpscomcn)——安防行业第一人气微信,万千精彩,千万不要错过!!!
网友评论
共有0条评论 点击查看全部>>24小时阅读排行
本周阅读排行