视频分析中异常事件分析的应用
模式识别技术
(1)目标分类技术:主要是识别运动物体是人、人群、自行车(助力车)、汽车还是噪声等种类。典型的手段是通过训练对目标种类形成一些模型定义,然后将新发现的运动物体与模型比对。通用的方法有支持向量机、决策树、神经网络等。当然在上述常见的种类之外,用户可以指定某种特殊物体,如渣土车等,在完成专门训练后就可以进行有针对性的检测。
(2)行为识别技术:主要是识别打架、奔跑、跌倒、徘徊、哨兵离岗等简单异常行为。 也可能是收银员的异常操作等较为复杂的行为。主要算法可以是非常有针对性的特定行为的检测;也可以较为通用的方法,如隐形马尔科夫过程等。(3) 车牌识别、集装箱号识别:由于实际应用时间较长,这类技术相对于上述技术而言更成熟些。通常采用决策树、神经网络或者组合技术。
应用力求突破
在平安城市建设的推动下,安防视频监控应用日趋普及。随着智能化技术的普及使用,市场渐渐不再满足于现有的智能视频分析技术种类,而是寻求更新的算法、更丰富的业务应用、更整体化的系统应用,力求实现在应用的广度、深度上的突破。为此,安防行业已经开始进行对新一代智能视频分析技术的研究,提出了一些新的产品形态、新的应用模式、新的系统架构。这些新技术、新产品正在逐渐与市场结合,探求新的发展空间。
一些厂家将一些简单的功能,如跨线、区域入侵、人脸检测等算法直接嵌入到芯片中,从而降低相关产品的开发门槛,进而推动智能视频分析的分布式应用,对网络带宽占用、视频存储空间的降低等方面均会有一定的改观。
面临问题
目前来看,虽然近年智能视频分析技术迅速发展,应用范围也在不断扩展,市场上已经有了网络监控的各种产品,如网络摄像机、网络矩阵等,但由于这些产品的质量还有待提高,图像看起来有明显的延迟、跳动、不够清晰等缺陷,由于硬件本身性能不够稳定,易出现死机、重启、误漏报等问题。而智能视频分析本身算法的局限,在理想环境下才可实现其全部功能,所以在实际应用中,只能初步实现较简单的功能。目前智能视频分析主要面临以下几个方面问题:
第一是技术层面:室外夜间光照不足、恶劣天气、图像压缩处理、网络传输链路带宽受限等因素造成图像质量下降,给安防智能视频分析带来先天困难;目标与背景相似或背景杂乱等导致目标分割以及特征信息提取困难;针对复杂异常行为、事件建模困难,相应的智能分析算法识别性能不高。上述因素容易造成虚假报警、漏报警、跟踪困难等不良后果,制约了智能视频分析应用系统实战性能的提升。
第二是产业层面:主要的困惑还是客户对智能视频分析产品的过高期望与该技术的性能表现易受使用条件的限制。由于用户对智能分析这类产品接触不多,对这类产品的效果有疑问。而有的厂家为了能够吸引客户进行夸大宣传,结果实际使用效果与宣传效果不符,使得这些客户对智能视频分析产品再无好感。厂商对产品大部分用户没有认真梳理应用需求;产品研发部门缺乏对安防行业的深入理解,导致智能视频分析产品功能千遍一律,缺乏针对性。再者,缺少权威的标准认证体系,导致用户对产品的性能无法有效把控。
第三是市场层面:目前很多智能视频分析产品多是自主研发,而这类企业就需要摊薄早期的开发成本。因此,这类产品在定价方面可能要高于一般客户的承受能力,这也就决定了智能分析产品尤其是行为分析产品只能在监狱、高档小区或者机关重地等具有严格、精准监控需求的地方。
只有开展基础、共性的关键技术攻关,为突破智能视频分析深度应用创造条件;做好典型项目的示范作用,引导用户从管理流程上重视智能视频分析提供的信息;深化行业的智能应用,建立“研发+集成商+行业用户”的合作机制,为研发和应用提供一个互动平台;加快制定标准和规范,提高智能视频分析产品性能鉴定的权威性和可操作性,才能为智能视频分析应用推广“保驾护航”,智能视频分析也才能在更多行业、领域得到应用。
智能视频分析作为一项仍在不断发展与完善的新技术,如果企业不能迅速建立自己独具特色的核心竞争力和核心产品,想要取得市场的话语权和持续性的发展不是一件容易的事情。目前智能视频分析技术仍处于成长阶段,最大的挑战其实还是来自于技术,这是一个需要能够静下来专心研究做产品和价值的行业,作为产业链底层的技术供应商,最终还是需要靠产品说话。作为视频监控未来发展的必然方向,智能化虽然现在还存在一些问题,但随着计算机技术以及智能技术的发展,这些问题都会得到很好的解决,智能化视频技术将得到更为广泛的应用。
声明:
凡文章来源标注为"CPS中安网"的文章版权均为本站所有,如需转载请务必注明出处为"CPS中安网",违反者本网将追究相关法律责任。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
相关阅读
征稿:
为了更好的发挥CPS中安网资讯平台价值,促进诸位自身发展以及业务拓展,更好地为企业及个人提供服务,中安网诚征各类稿件,欢迎有实力安防企业、机构、研究员、行业分析师。投稿邮箱: cps-tougao@cps.com.cn(查看征稿详细)