关注我们 

大华股份大数据安防应用初探

2014-06-12 10:25:57 来源:CPS中安网 作者:王海丰 责任编辑: xiatingyue 收藏本文
摘要:据IDC预测,2020年全球的数据总量将达到35ZB,并以每两年翻一番的速度在急速的增长。大数据时代的数据不仅仅是数据总量的庞大,同时也是种类的庞大。安防行业有着海量的视频、图片数据,一个大型城市每天产生的数据就可以达到1PB,同时还有飞速增长的特征数据,包括卡口过车数据、人脸抓拍数据、报警数据等等。
  大数据实时处理框架

  安防系统有大量的视频图像数据,传统的使用方式都是事后靠人工来查阅,效率极低。安防系统的终极目标应该是及时制止犯罪,实现公共安全,所以需要对数据做到实时处理,甚至能建立预测模型,云计算就是实现这种目标的工具。举几个例子,美国洛杉矶警察局运用云计算技术,对历史卷宗的分析,形成了预测犯罪发生地的模型;微软运用云计算技术,将911的历史数据和监控视频相结合,可以成功预测某地的犯罪。

  云计算系统可以划分为IaaS,PaaS,SaaS几个层次。IaaS主要完成了物理资源虚拟化工作,解除了业务和物理设备的关联,使得业务专注于业务本身,将资源管理交给了云计算平台。虚拟化的作用是显而易见的,它可以将业务变得弹性化,可以根据业务需求,虚拟出相应的计算资源给相应的应用。比如某体育馆有演唱会,即可对体育馆周边的视频数据进行重点智能化分析,白天可对交通十字路口的视频数据实时处理,晚上则可重点处理娱乐场所周边的视频数据。

  但是,IaaS只是一个基础,安防行业云计算的核心价值体现在SaaS层。它需要按照分布式的思维,重新实现了安防大数据处理的业务逻辑,一方面要对业务进行解构,另一方要和底层的IaaS,PaaS紧密结合,形成相对垂直的系统形态。在云计算服务化之后,还可以体现出很好的规模效应。比如,目前的交通系统,由于通信系统和发布系统一般都是独立的专用系统,成本高并且整个系统相对封闭,影响了智能交通系统的普及。采用云计算模式以后,对于一些周边地区而言,只需要租用相应的智能交通云计算服务即可。这样就可以大大降低了智能交通系统的建设门槛,有利于智能交通系统的普及。随着更多用户的加入, 进一步摊薄系统的建设成本,成本的降低又会带来更多的用户,通过这种良性循环,就可以加快智能交通系统的普及。

  在多中安防大数据处理业务形态中,智能交通是安防大数据是目前比较热门的方向。一个大型城市3个月的过车历史记录就达到1800亿条,每天20亿条记录。如此庞大的数据量给传统的数据存储和分析计算都来了巨大的压力。传统系统难以支撑,容量有限,处理速度有限,扩展困难。云计算系统可以很好的解决这个问题,实现性能和设备数量线性扩展,从而实现了千亿级数据秒级查询的能力。这种高速检索能力,给刑侦、交通服务都带了巨大的好处,使得类似套牌车等大数据量查询运算的应用变得有可能。

  不管是何种安防业务,其大数据的处理流程是比较类似的,可以提炼出如图中所描述的处理框架。首先通过云存储将大量的图片、视频等非结构化数据存储起来,并提供统一的访问形式,数据共享的能力。然后运用云计算的视频摘要分析能力,从视频图像数据中提取人和车等元数据信息,变成结构化数据存储在分布式数据库中。通过快速检索技术,可以提供秒级检索能力,为实时决策提供数据支撑。通过离线分析在结构化数据上进行数据挖掘,将数据进行聚类,并最终形成数据模型,对未来的事情进行预测。同时云计算的实时计算又能根据模型来提供实时告警。以上就是安防大数据完整的数据流。

        【作者单位:浙江大户技术股份有限公司】

关键词大华大数据云计算
分享到:
提示:试试"← →"实现快速翻页
本文导航

征稿:

为了更好的发挥CPS中安网资讯平台价值,促进诸位自身发展以及业务拓展,更好地为企业及个人提供服务,中安网诚征各类稿件,欢迎有实力安防企业、机构、研究员、行业分析师。投稿邮箱: cps-tougao@cps.com.cn(查看征稿详细)

品牌推荐

排行榜

24小时 本周 本月
论坛热点 最新话题